Heading towards a new kind of electronics

 

Rarely has a scientific discovery led to a Nobel Prize as quickly as the first production of graphene. The British researchers who managed to make it in 2004 were honoured with the Nobel Prize in Physics only six years later. What is particular about this material, which consists of pure carbon, is its two-dimensional structure: the atoms in this material are arranged in a single, extremely flat layer. Electrons can only move within this 2D plane, and always feel the influence of their constraint. This leads to unusual properties that are not found in ordinary, three-dimensional crystals.

Scientists are also researching two-dimensional materials and their special characteristics at the Physics and Materials Science Research Unit of the University of Luxembourg. In 2014, the project “Modelling of carrier dynamics and ultra-fast spectroscopy in two-dimensional materials” started, which the FNR financed for a period of three years.

In close collaboration with scientists at other European research institutions, the team led by Dr Alejandro Molina Sánchez took an especially close look at so-called transition metal dichalcogenides: chemical compounds of metals such as molybdenum or tungsten with elements of the carbon group such as selenium or sulphur. These 2D materials are semiconductors and, due to their specific structure, are suitable for producing optoelectronic components that can produce or capture light – in other words, they are suitable for novel solar cells.

What happens during relaxation?

“What goes on inside these materials, and how energetically excited charge carriers behave in them, is not yet fully understood,” says Alejandro Molina Sánchez. “An open question at the beginning of the project was how do electrons in the two-dimensional layer relax after excitation, meaning how do they return to their original state.”

This can be studied experimentally using ultra-fast optical spectroscopy. The researchers led by Molina Sánchez have developed a model for simulating experiments of this nature for the first time, allowing the results to be explained theoretically. The researchers not only had to contend with the extreme rapidity of the processes but also had to take numerous complicated interference effects into account – for example, those caused by material defects or by the influence of the substrate carrying the 2D material layer.

Calculating with valleys

The researchers focused primarily on so-called valleytronics. This is a term physicists give to an analogue of spintronics, which is a kind of data processing based on a magnetic property of electrons called spin.

This spin can assume different quantum states. The same goes for special properties of certain two-dimensional crystals – and in the future, it may be possible to exploit them technically in valleytronics. The term arises from the curve shapes for the electronic energy bands in 2D semiconductors, which form two separate minima, or “valleys”.

From a vague idea to a tangible concept

Before the start of the project at the University of Luxembourg, research in this area was still in its early stages, and using valleytronics was hardly more than a vague idea for a new kind of electronics. But now, the newly developed model proves the concept could take off. “We have shown that the necessary states can be produced in 2D materials and how long they can persist,” Molina Sánchez says. “With our model, it is possible to find out what chemical compounds are suitable for valleytronics.”

The researchers thus have the necessary tools at hand to create novel, especially sensitive and efficient optoelectronic components. Alejandro Molina Sánchez has no doubt: two-dimensional semiconductors made of transition metal dichalcogenides will soon be even more scientifically and technologically significant than the Nobel-worthy graphene.


This success story originates from the FNR 2018 Annual Report – view the Annual Report as PDF or interactive digital version


Dr Alejandro Molina Sánchez

CORE

The main FNR programme for funding of high-quality research projects in five priority domains: ICT, Sustainable Resources Management, Material Sciences, Biomedical and Health Sciences, Societal Challenges. The programme is dedicated to established (CORE) and starting Principle Investigators (CORE Junior track).

DOMAIN: MS – New Functional and Intelligent Materials and Surfaces

FNR COMMITTED: 351,000 EUR

PERIOD: 01.12.2014 – 31.03.2017

More from the domains Materials, Physics & Engineering

A microscope faster than light

Greenox inter pares

When the drugs don’t work

Spotlight on Young Researchers: Martin Řehoř

FNR ATTRACT Fellows – the people behind the science: Anupam Sengupta

Spotlight on Young Researchers: Hameeda Jagalur Basheer

Spotlight on Young Researchers: Mohammad Zare

Spotlight on Young Researchers: Paul Johanns

FNR 20 years: An evening with science [fiction] in the House of Frankenstein

“Encountering some of the most brilliant minds on the planet”: Interview with Hannah Rana

Understanding the transformations of energy

From science to innovation: Luxembourg City in the age of sustainability

Joining forces to create the tires of the future

A modern and high quality environment for doctoral candidates in Luxembourg

Spotlight on Young Researchers: Anjali Sharma

Research meets industry: A mine planning methodology for space

Research meets industry: A technique to enrich Moon minerals

Spotlight on Young Researchers: Nanotechnology – a future big player in health

10 years of Mr Science

Spotlight on Young Researchers: Foni Raphaël Lebrun-Ricalens

Spotlight on Young Researchers: Adham Ayman Al-Sayyad

Spotlight on Young Researchers: Thomas Schaubroeck

Sharing insights to inspire the next generation

FNR ATTRACT Fellows – the people behind the science: Thomas Schmidt

FNR ATTRACT Fellows – the people behind the science: César Pascual García

Spotlight on Young Researchers: Maciej Piotr Chrzanowski

Spotlight on Young Researchers: Max Hilaire Wolter

FNR ATTRACT Fellows – the people behind the science: Andreas Michels

PEARL: Transforming energy is key

Research trends: Tandem solar cells – two-packs that reach new efficiency records

FNR ATTRACT Fellows – the people behind the science: Phillip Dale

FNR ATTRACT Fellows – the people behind the science: Massimiliano Esposito

FNR ATTRACT Fellows: The people behind the science – Alex Redinger

Spotlight on Young Researchers: Miguel Angel Olivares Mendez

Spotlight on Young Researchers: Pit Losch

Spotlight on Young Researchers: Svenja Bourone

Spotlight on Young Researchers: Paul Hauseux

Twisted: CORE project leads to innovative interdisciplinary conference

CORE Junior: Colloidal Physics – Concerning Research on Energy Landscapes

AFR: From cycle racing to the chemistry lab – Pit Losch on the quest for alternatives to fossils fuels

Spotlight on Young Researchers: Guillaume Nataf

Spotlight on Young Researchers: Alex Gansen

“The Beauty of Science”: doctoral student Hossam Elanzeery about his encounter with 29 Physics Nobel laureates

AFR-PPP SPOTLIGHT: Nearly zero energy buildings: how do we make industrial buildings energy efficient?

INTER SPOTLIGHT: Faster, better, cheaper – materials scientists optimise solar cells

CORE-PPP SPOTLIGHT: SIMOP: surface induced molecular organisation in polymers

More CORE highlights

Spotlight on Young Researchers: Lucas Oesch

Corpornation: Forging a modern society

Spotlight on Young Researchers: Damien Brevers

This site uses cookies. By continuing to use this site, you agree to the use of cookies for analytics purposes. Find out more in our Privacy Statement